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1 Introduction
This vignette provides statistical details on the MCMC algorithms used to fit joint species distribution models
in spOccupancy (i.e., multi-species occupancy models with species correlations). In particular, we discuss the
Gibbs samplers for each of the following four models presented in Doser, Finley, and Banerjee (2023):

1. A spatial latent factor multi-species occupancy model using sfMsPGOcc() that accommodates residual
species correlations, imperfect detection, and spatial autocorrelation.

2. A latent factor multi-species occupancy model using lfMsPGOcc() that accommodates residual species
correlations and imperfect detection.

3. A spatial latent factor joint species distribution model using sfJSDM() that accommodates residual
species correlations and spatial autocorrelation.

4. A latent factor joint species distribution model using lfJSDM() that accommodates residual species
correlations.

2 Pólya-Gamma data augmentation details
We use Pólya-Gamma data augmentation following (Polson, Scott, and Windle 2013) to yield an efficient
Gibbs sampler for all joint species distribution models in spOccupancy. Traditionally, the species-specific
regression coefficients (and intercepts) for occurrence (βi) and detection (αi) require a Metropolis update,
which can lead to slow convergence and bad mixing of MCMC chains (Clark and Altwegg 2019). Instead, we
introduce species-specific Pólya-Gamma latent variables for both the occurrence and detection portions of the
spatial factor multi-species occupancy model, which induces efficient Gibbs updates for the species-specific
occurrence and detection regression coefficients.

Let ωi,β(sj) for each species i and location j with coordinates sj follow a Pólya-Gamma distribution with
parameters 1 and 0 (i.e., ωi,β(sj) ∼ PG(1, 0)). Given this species-specific latent variable, we can re-express
the Bernoulli process model (Equation 1 in Doser, Finley, and Banerjee (2023)) as

ψi(sj)zi(sj)(1 − ψi(sj))1−zi(sj) =
exp(x⊤

j βi + w∗
i (sj))zi(sj)

1 + exp(x⊤
j β + w∗

i (sj))
= exp(κi(sj)[x⊤

j βi + w∗
i (sj)])×∫

exp(−ωi,β(sj)
2 (x⊤

j βi + w∗
i (sj))2)p(ωi,β(sj) | 1, 0)dωi,β(sj),

(1)

where κi(sj) = zi(sj) − 0.5 and p(ωi,β(sj)) is the probability density function of a Pólya-Gamma distribution
with parameters 1 and 0 (Polson, Scott, and Windle 2013). Similarly, we define ωi,k,α(sj) ∼ PG(1, 0) as a
latent variable for each site j, each species i, and each replicate k in the detection portion of the occupancy
model, which results in an analogous re-expression of the Bernoulli likelihood for yi,k(sj) as we showed in
Equation (1) for zi(sj). These re-expressions of the Bernoulli processes result in Gibbs updates for both
the occurrence (βi) and detection (αi) regression coefficients when they are assigned normal priors [Polson,
Scott, and Windle (2013); clark2019].

3 Spatial factor multi-species occupancy model
3.1 Model description
Let sj denote the spatial coordinates of site j, for all j = 1, . . . , J sites. Define zi(sj) as the true latent
presence (1) or absence (0) of species i at site j for i = 1, . . . , N species. We assume zi(sj) arises from a
Bernoulli process following

zi(sj) ∼ Bernoulli(ψi(sj)), (2)
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where ψi(sj) is the probability of occurrence for species i at site j. We model ψi(sj) according to

logit(ψi(sj)) = x(sj)⊤βi + w∗
i (sj) (3)

where xj is a pψ×1 vector of an intercept and environmental covariates at site j, βi is a pψ×1 species-specific
coefficient vector (including an intercept parameter), and w∗

i (sj) is a species-specific latent spatial process.
We seek to jointly model the species-specific spatial processes to account for residual correlations between
species. We use a spatial factor model (Hogan and Tchernis 2004), a dimension reduction approach that can
account for correlations among a large number of species. Specifically, we decompose w∗

i (sj) into a linear
combination of q latent variables (i.e., factors) and their associated species-specific coefficients (i.e., factor
loadings). In particular, we have

w∗
i (sj) = λ⊤

i w(sj), (4)

where λi is the ith row of factor loadings from an N × q matrix Λ, and w(sj) is a q× 1 vector of independent
spatial factors at site j. We achieve computational improvements and dimension reduction by setting q << N .
We account for residual species correlations via their individual responses (i.e., loadings) to the q latent
spatial factors.

Following Taylor-Rodriguez et al. (2019) and Tikhonov et al. (2020), we model each r = 1, . . . , q independent
spatial process wr(sj) using an NNGP (Datta et al. 2016) to achieve computational efficiency when modeling
over a large number of spatial locations. More specifically, we have

wr(sj) ∼ N(0, C̃r(θr)), (5)

where C̃r(θr) is the NNGP-derived covariance matrix for the rth spatial process. The vector θr consists of
parameters governing the spatial process according to a spatial correlation function (Banerjee, Carlin, and
Gelfand 2014). For many correlation functions (e.g., exponential, spherical, Gaussian), θr includes a spatial
variance parameter, σ2

r , and a spatial range parameter, ϕr, while the Mat'ern correlation function includes an
additional spatial smoothness parameter, νr.

We assume all species-specific parameters (βi,t for all t = 1, . . . , pψ) arise from community-level distributions
(Dorazio and Royle 2005; Gelfand et al. 2005). Specifically, we assign a normal prior with mean and variance
hyperparameters that represent the community-level average and variance among species-specific effects
across the community, respectively. For example, we model the non-spatial component of the species-specific
occurrence intercept, βi,1, following

βi,1 ∼ N(µβ1 , τ
2
β1

), (6)

where µβ1 is the average intercept across the community, and τ2
β1

is the variability in the species-specific
intercepts across the community.

To estimate ψi(sj) and zi(sj) while explicitly accounting for imperfect detection, we obtain k = 1, . . . ,Kj

sampling replicates at each site j. Let yi,k(sj) denote the detection (1) or nondetection (0) of species i during
replicate k at site j. We model the observed data yi,k(sj) conditional on the true species-specific occurrence
zi(sj) at site j following

yi,j,k ∼ Bernoulli(πi,j,kzi,j),
logit(πi,j,k) = v⊤

i,j,kαi,
(7)

where πi,j,k is the probability of detecting species i at site j during replicate k (given it is present at site
j), which is a function of site and replicate-specific covariates V and a vector of species-specific regression
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coefficients (αi). Similarly to the occurrence regression coefficients, the species-specific detection coefficients
are envisioned as random effects arising from a common community-level distribution:

αi ∼ Normal(µα,T α), (8)

where µα is a vector of community-level mean effects for each detection covariate effect (including the
intercept) and T α is a diagonal matrix with diagonal elements τ 2

α that represent the variability of each
detection covariate effect among species in the community.

We assume normal priors for community-level mean parameters and inverse-Gamma priors for community-level
variance parameters. Identifiability of the latent spatial factors requires additional constraints (Hogan and
Tchernis 2004). Following Taylor-Rodriguez et al. (2019), we set all elements in the upper triangle of the
factor loadings matrix Λ equal to 0 and its diagonal elements equal to 1. We additionally fix the spatial
variance parameters σ2

r of each latent spatial processes to 1. We assign standard normal priors for all lower
triangular elements in Λ and assign each spatial range parameter ϕr an independent uniform prior.

3.2 Gibbs sampler
Here we describe the Gibbs sampler for fitting the spatial factor multi-species occupancy model using
sfMsPGOcc().

3.2.1 Update community-level occurrence coefficients (µβ)

We first sample all community-level parameters followed by species level parameters. First we sample the
community-level occurrence coefficients. Let µβ denote the vector of all community-level occurrence means,
and similarly let T β denote the variance matrix of all community-level occurrence variance parameters.
Note that T β is a diagonal matrix. Let µβ ∼ N(µ0,β ,Σβ) denote our prior distribution, where Σβ is a
diagonal matrix. Note this is equivalent to assigning an independent normal prior for each coefficient. Our
full conditional for the community-level regression coefficients µβ is then

µβ | · ∼ N([Σ−1
β +NT −1

β ]−1
[ N∑
i=1

(T −1
β βi) + Σ−1

β µ0,β

]
, [Σ−1

β +NT −1
β ]−1). (9)

3.2.2 Update community-level detection coefficients (µα)

Next, we sample the community-level detection coefficients. Let µα denote the vector of all community-level
detection means, and similarly let T α denote the diagonal variance matrix of all community-level detection
variance parameters. Let µα ∼ N(µ0,α,Σα) denote the prior distribution, where Σα is a diagonal matrix.
Our full conditional then takes the form

µα | · ∼ N([Σ−1
α +NT −1

α ]−1
[ N∑
i=1

(T −1
α αi) + Σ−1

α µ0,α

]
, [Σ−1

α +NT −1
α ]−1). (10)

3.2.3 Update community-level occurrence variances (τ 2
β )

Let τ2
t,β denote the community-level variance for the tth occurrence parameter (t = 1, . . . , pψ). We assign an

inverse gamma normal prior to τ2
t,β with shape parameter aτt,β

and scale parameter bτt,β
. Our full conditional

is then

τ2
t,β | · ∼ IG(aτt,β

+ N

2 , bτt,β
+
∑N
i=1(βi,t − µβt

)2

2 ). (11)

4



3.2.4 Update community-level detection variances (τ 2
α)

Let τ2
t,α denote the community-level variance for the tth detection parameter (t = 1, . . . , pπ). We assign an

inverse gamma normal prior to τ2
t,α with shape parameter aτt,α

and scale parameter bτt,α
. Our full conditional

is then

τ2
t,α | · ∼ IG(aτt,α

+ N

2 , bτt,α
+
∑N
i=1(αi,t − µαt)2

2 ). (12)

3.2.5 Update species-specific occurrence auxiliary variables (ωi,β(sj))

We next sample the occurrence auxiliary variable (ωi,β(sj) individually for each species i and site j. Our full
conditional is

ωi,β(sj) | · ∼ PG(1,x(sj)⊤βi + w∗
i (sj)). (13)

3.2.6 Update detection auxiliary variables (ωi,k,α(sj))

We next update the latent Pólya-Gamma auxiliary variable for the detection process, ωi,k,α(sj), for each
replicate k at each site j for each species i. Note that we only need to sample ωi,k,α(sj) when zi(sj) = 1,
which can change across different MCMC iterations. Following Polson, Scott, and Windle (2013), we have

ωi,k,α(sj) | · ∼ PG(1,v(sj)⊤αi). (14)

3.2.7 Update species-level occurrence regression coefficients (βi)

We update the species-level occurrence regression coefficients (βi), including the intercept, from the following
multivariate normal full conditional

βi | · ∼ Normal
(

[T −1
β + X⊤SβX]−1[X⊤(zi − 0.51J − Sβw∗

i ) + T −1
β µβ], [T −1

β + X⊤SβX]−1
)
, (15)

where Sβ is a diagonal J × J matrix with diagonal entries equal to the latent Pólya-Gamma variable values
for species i, zi is the J × 1 vector of latent occurrence values for species i, 1J is a J × 1 vector of 1s, and w∗

i

is the J × 1 vector of spatial random effects for species i.

3.2.8 Update species-level detection regression coefficients (αi)

Next, we sample the species-specific detection regression coefficients for species i (αi) from

αi | · ∼ Normal
(

[T −1
α + Ṽ

⊤
SαṼ ]−1[Ṽ ⊤(ỹi − 0.51J∗

i
) + T −1

α µα], [T −1
α + Ṽ

⊤
SαṼ ]−1

)
. (16)

The species-level detection regression coefficients αi are only informed by the locations where zi(sj) = 1,
since we assume no false positive detections. We define J∗

i as the total number of sites at the current
iteration of the MCMC with zi(sj) = 1. Sα is a diagonal matrix with diagonal entries equal to the latent
Pólya-Gamma variable values at the site/replicate combinations that correspond to zi(sj) = 1. The matrix
Ṽ is the matrix of detection covariates associated with the sites where zi(sj) = 1. Similarly, ỹi is a vector of
stacked detection-nondetection data values at the entries associated with zi(sj) = 1.
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3.2.9 Update latent spatial factors (w(sj))

Let N(sj) denote the set of m nearest neighbors of sj among s1, s2, . . . , sj−1. Let wr(N(sj)) denote the m
realizations of the rth NNGP at the locations in N(sj). Let C(·, ϕr) denote the correlation function of the
original Gaussian Process (GP) from which the rth NNGP is derived. For any two sets A1 and A2, define
CA1,A2(ϕr) as the correlation matrix between the observations in A1 and A2 for the rth GP. For j ≥ 1, we
have

br(sj) = Csj ,N(sj)(ϕr)C−1
N(sj),N(sj)(ϕr), (17)

where br(s1) = 0 for all r = 1, . . . , q. Further, we have

fr(sj) = Csj ,sj
(ϕr) − Csj ,N(sj)(ϕr)C−1

N(sj),N(sj)(ϕr)CN(sj),sj
(ϕr), (18)

where fr(s1) = 0 for all r = 1, . . . , q. For any two locations s1 and s2, if s1 ∈ N(s2) and is the lth member of
N(s2), then define br(s2, s1) as the lth entry of br(s2). Let U(s1) = {s2 ∈ S | s1 ∈ N(s2)} be the collection
of locations s2 for which s1 is a neighbor, where S is the set of all J spatial locations. For every s2 ∈ U(s1),
define ar(s2, s1) = wr(s2) −

∑
s∈N(s2),s ̸=s2

wr(s)br(s2, s). Extending this to matrix notation, let B(sj) be
a q × mq block matrix, with each q × q diagonal block containing the elements of br(sj) for each of the
r = 1, . . . q spatial factors for each of the specific m neighbors. Let F (sj) be a q × q diagonal matrix with
diagonal elements of fr(sj). Let a(s, sj) contain the values ar(s, sj) for each of the r = 1, . . . , q latent factors.
Using this notation, the full conditional for w(sj) is

w(sj) | ·Nq(µjΣj ,Σj) where,
µj = F (sj)−1B(sj)w(N(sj)) +

∑
s∈U(sj) B(s, sj)⊤F (sj)−1a(s, sj)+

Λ⊤Sj,β((z(sj) − 0.51N )S−1
j,β − X(sj)⊤β) and

Σj =
(
F (sj)−1 +

∑
s∈U(sj) B(s, sj)⊤F (sj)−1B(s, sj) + Λ⊤Sj,βΛ

)−1
,

(19)

where w(N(sj)) is a stacked mq × 1 vector of the m realizations of each of the r NNGPs at the locations
in N(sj), Sj,β is an N × N diagonal matrix with the Pólya-Gamma auxiliary variables for each species i
at site j along the diagonal elements, X(sj)⊤ is a N × (Npψ) block-diagonal matrix with the ith diagonal
block the length x(sj) vector of pψ spatially-varying covariates, and β is the (Npψ) × 1 stacked vector of
species-specific regression coefficients (including the intercept).

3.2.10 Update latent spatial factor loadings (Λ)

Recall we set all diagonal elements of Λ to 1 and all upper triangular elements equal to 0 in order to ensure
identifiability of the latent spatial factors. Given this requirement, let qi = min{i− 1, q} for 2 ≤ i ≤ N , and
let λ̃i = (λi,1, . . . , λi,qi

)⊤ be the vector representing the unrestricted elements in the ith row of Λ. Define W
as the J × q matrix of latent spatial factors, and let W1:i be the first i columns of W. Using this notation,
the full conditional density for λ̃i is Nq(Ωλ̃i

µλ̃i
,Ωλ̃i

), where

µλ̃i
=
{

W⊤
1:(i−1)Si,β(S−1

i,β(zi − 0.51J) − X⊤
i βi − ẇi) if 2 ≤ i ≤ q

W⊤Si,β(S−1
i,β(zi − 0.51J) − X⊤

i βi) if i > q
, and (20)

Ωλ̃i
=
{

(W⊤
1:(i−1)Si,βW1:(i−1) + Ii−1)−1 if 2 ≤ i ≤ q

(W⊤Si,βW + Iq)−1 if i > q
, (21)

where Si,β is a J ×J matrix with diagonal elements consisting of the latent Pólya-Gamma auxiliary variables
for species i, ẇi is the ith column of W, and X⊤

i is an N × pψ matrix of spatially-varying covariates for
species i (which we assume are equivalent for all i species).
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3.2.11 Update spatial range parameters (ϕ)

We use a Metropolis within Gibbs step to sample ϕ. The full conditional posterior density for ϕr for each
r = 1, . . . , q is proportional to

p(ϕr | ·) ∝ pr(ϕr)p(wr | ϕr)
∝ p(ϕr) ×

∏J
j=1 N

(
wr(sj) | br(sj)⊤wr(N(sj)), fr(sj).

) (22)

We sample ϕr using a random walk Metropolis step. We use a normal proposal distribution along with a
Jacobian transformation.

3.2.12 Update latent occurrence values (zi(sj))

Finally, we sample the latent occurrence states for each species. We set zi(sj) = 1 for all sites where there is
at least one detection of species i, and so we only need to sample zi(sj) at sites where there are no detections.
Thus, for all locations with no detections of the species i, we sample zi(sj) according to

zi(sj) | · ∼ Bernoulli
(

ψi(sj)
∏Kj

k=1(1 − πi,k(sj))
1 − ψi(sj) + ψi(sj)

∏Kj

k=1(1 − πi,k(sj))

)
. (23)

4 Latent factor multi-species occupancy model
The spOccupancy function lfMsPGOcc() fits a latent factor multi-species occupancy model. The latent factor
multi-species occupancy model is identical to the spatial factor multi-species occupancy model, except we
do not assume any spatial structure for the latent factors. Instead, we assign each of the r = 1, . . . , q latent
factors a standard normal prior. This model is analogous to the model of (Tobler et al. 2019), except we
use a logistic link function and Pólya-Gamma latent variables rather than a probit link function, as well as
different restrains on the factor loadings matrix.

4.1 Model description
Let zi,j be the true presence (1) or absence of some species i at site j for a total of i = 1, . . . , N species and
j = 1, . . . , J sites. We assume zi,j arises from a Bernoulli process following

zi,j ∼ Bernoulli(ψi,j),
logit(ψi,j) = x⊤

j βi + w∗
i,j ,

(24)

where ψi,j is the probability of occurrence of species i at site j, which is a function of site-specific covariates
xj , a vector of species-specific regression coefficients (βi) for those covariates, and a latent process w∗

i,j . We
incorporate residual species correlations through the formulation of the latent process w∗

i,j . We use a factor
modeling approach, which is a dimension reduction approach that can account for correlations among a large
number of species. Specifically, we decompose w∗

i,j into a linear combination of q latent variables (i.e., factors)
and their associated species-specific coefficients (i.e., factor loadings). Thus, we have

w∗
i,j = λ⊤

i wj , (25)

where λi is the ith row of factor loadings from an N × q matrix Λ, and wj is a q × 1 vector of independent
latent factors at site j. We achieve computational improvements by setting q << N . We account for residual
species correlations via their individual responses (i.e., loadings) to the q latent spatial factors. We can
envision the latent variables wj as unmeasured site-specific covariates that are treated as random variables in
the model estimation procedure. For the non-spatial latent factor model, we assign a standard normal prior
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distribution to the latent factors (i.e., we assume each latent factor is independent and arises from a normal
distribution with mean 0 and standard deviation 1).

We envision the species-specific regression coefficients (βi) as random effects arising from a common community-
level distribution:

βi ∼ Normal(µβ,T β), (26)

where µβ is a vector of community-level mean effects for each occurrence covariate effect (including the
intercept) and T β is a diagonal matrix with diagonal elements τ 2

β that represent the variability of each
occurrence covariate effect among species in the community.

We do not directly observe zi,j , but rather we observe an imperfect representation of the latent occurrence
process. Let yi,j,k be the observed detection (1) or nondetection (0) of a species i of interest at site j during
replicate k for each of k = 1, . . . ,Kj replicates at each site j. We envision the detection-nondetection data as
arising from a Bernoulli process conditional on the true latent occurrence process:

yi,j,k ∼ Bernoulli(pi,j,kzi,j),
logit(pi,j,k) = v⊤

i,j,kαi,
(27)

where pi,j,k is the probability of detecting species i at site j during replicate k (given it is present at site
j), which is a function of site and replicate-specific covariates V and a vector of species-specific regression
coefficients (αi). Similarly to the occurrence regression coefficients, the species-specific detection coefficients
are envisioned as random effects arising from a common community-level distribution:

αi ∼ Normal(µα,T α), (28)

where µα is a vector of community-level mean effects for each detection covariate effect (including the
intercept) and T α is a diagonal matrix with diagonal elements τ 2

α that represent the variability of each
detection covariate effect among species in the community.

We assign multivariate normal priors for the community-level occurrence (µβ) and detection (µα) means,
and assign independent inverse-Gamma priors on the community-level occurrence (τ2

β) and detection (τ2
α)

variance parameters. To ensure identifiability of the latent factors, we set all elements in the upper triangle
of the factor loadings matrix Λ equal to 0 and its diagonal elements equal to 1. Analogous to the spatial
factor multi-species occupancy model, we introduce Pólya-Gamma auxiliary variables for both the occurrence
and detection components of the model to induce a Gibbs update for the species-specific occurrence and
detection random effects.

4.2 Gibbs sampler
The Gibbs sampler for the latent factor multi-species occupancy model is identical to the sampler for the
spatial factor multi-species occupancy model, with two exceptions: the spatial range parameters are no longer
in the model, and the update for the latent factors is different. See Section 3.2 for the Gibbs updates for all
parameters besides the latent factors.

4.2.1 Update latent factors (wj)

Let wj denote the q latent factors at site j. Our full conditional is

wj | ·Nq(µjΣj ,Σj) where,
µj = Λ⊤Sj,β((zj − 0.51N )S−1

j,β − X⊤
j β) and

Σj =
(
Iq + Λ⊤Sj,βΛ

)−1
,

(29)
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where Sj,β is an N × N diagonal matrix with the Pólya-Gamma auxiliary variables for each species i at
site j along the diagonal elements, X⊤

j is a N × (Npψ) block-diagonal matrix with the ith diagonal block
the length xj vector of pψ spatially-varying covariates, β is the (Npψ) × 1 stacked vector of species-specific
regression coefficients (including the intercept), and Iq is the q × q identity matrix.

5 Spatial factor joint species distribution model
The spOccupancy function sfJSDM() fits a spatial factor joint species distribution model. The spatial factor
JSDM (sfJSDM()) is a joint species distribution model that ignores imperfect detection but accounts for
species residual correlations and spatial autocorrelation. As in the spatial factor multi-species occupancy
model, we account for species correlations using a spatial factor model, where the spatial factors arise
from q independent NNGPs. This is analogous to the NNGP model presented by Tikhonov et al. (2020),
and is similar to other spatially-explicit JSDMs (Thorson et al. 2015; Ovaskainen et al. 2016). Because
this model does not account for imperfect detection, we eliminate the detection sub-model and rather
directly model a simplified version of the replicated detection-nondetection data, denoted as y∗

i (sj), where
y∗
i (sj) = I(

∑Kj

k=1 yi,k(sj) > 0), with I(·) an indicator function denoting whether or not species i was detected
during at least one of the Kj replicates at site j. Note that in the following description, we will describe the
covariate effects as effecting the probability of occurrence. However, since we do not explicitly account for
imperfect detection, the estimated probability is really a confounded process of occurrence and detection,
and thus all covariate effects should be interpreted as combined effects on occurrence and detection.

5.1 Model description
Let sj denote the spatial coordinates of site j, for all j = 1, . . . , J sites. Define y∗

i (sj) as the detection (1) or
nondetection (0) of species i at site j. We assume y∗

i (sj) arises from a Bernoulli process following

y∗
i (sj) ∼ Bernoulli(ψi(sj)), (30)

where ψi(sj) is the probability of occurrence for species i at site j. We model ψi(sj) according to

logit(ψi(sj)) = x(sj)⊤βi + w∗
i (sj) (31)

where xj is a pψ×1 vector of an intercept and environmental covariates at site j, βi is a pψ×1 species-specific
coefficient vector (including an intercept parameter), and w∗

i (sj) is a species-specific latent spatial process.
Analogous to the spatial factor multi-species occupancy model, we model w∗

i (sj) using a spatial facotr
modeling approach, where we have

w∗
i (sj) = λ⊤

i w(sj), (32)

where λi is the ith row of factor loadings from an N × q matrix Λ, and w(sj) is a q× 1 vector of independent
spatial factors at site j. We achieve computational improvements and dimension reduction by setting q << N .
We account for residual species correlations via their individual responses (i.e., loadings) to the q latent
spatial factors.

We model each r = 1, . . . , q independent spatial process wr(sj) using an NNGP (Datta et al. 2016) to achieve
computational efficiency when modeling over a large number of spatial locations. More specifically, we have

wr(sj) ∼ N(0, C̃r(θr)), (33)

where C̃r(θr) is the NNGP-derived covariance matrix for the rth spatial process. The vector θr consists of
parameters governing the spatial process according to a spatial correlation function (Banerjee, Carlin, and
Gelfand 2014). For many correlation functions (e.g., exponential, spherical, Gaussian), θr includes a spatial
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variance parameter, σ2
r , and a spatial range parameter, ϕr, while the Mat'ern correlation function includes an

additional spatial smoothness parameter, νr.

We assume all species-specific parameters (βi,t for all t = 1, . . . , pψ) arise from community-level distributions
(Dorazio and Royle 2005; Gelfand et al. 2005). Specifically, we assign a normal prior with mean and variance
hyperparameters that represent the community-level average and variance among species-specific effects
across the community, respectively. For example, we model the non-spatial component of the species-specific
occurrence intercept, βi,1, following

βi,1 ∼ N(µβ1 , τ
2
β1

), (34)

where µβ1 is the average intercept across the community, and τ2
β1

is the variability in the species-specific
intercepts across the community.

5.2 Gibbs sampler
The Gibbs sampler for the spatial factor joint species distribution model is analogous to the updates for
the occurrence parameters in the spatial factor multi-species occupancy model, with all instances of zi(sj)
replaced by y∗

i (sj). See Section 3.2.

6 Latent factor joint species distribution model
The spOccupancy function lfJSDM() fits a latent factor joint species distribution model. The latent factor
JSDM (lfJSDM()) is a standard joint species distribution model that ignores imperfect detection and spatial
autocorrelation but accounts for species residual correlations. As in the latent factor multi-species occupancy
model, we account for species correlations using a latent factor model, where the latent factors arise from
standard normal distributions. This model is analogous to many varieties of non-spatial JSDMs that leverage
a factor modeling approach for dimension reduction (Hui 2016; Ovaskainen et al. 2017). The model is
identical to the spatial factor joint species distribution model implemented in sfJSDM(), except the latent
factors are assumed to arise from standard normal distributions instead of a latent spatial process. This
model is analogous to the latent factor multi-species occupancy model, except here we do not account for
imperfect detection.

6.1 Model description
Define y∗

i,j as the detection (1) or nondetection (0) of species i at site j for i = 1, . . . , N species at j = 1, . . . , J
sites. We assume y∗

i,j arises from a Bernoulli process following

y∗
i,j ∼ Bernoulli(ψi,j), (35)

where ψi,j is the probability of occurrence for species i at site j. We model ψi,j according to

logit(ψi,j) = x⊤
j βi + w∗

i,j (36)

where xj is a pψ×1 vector of an intercept and environmental covariates at site j, βi is a pψ×1 species-specific
coefficient vector (including an intercept parameter), and w∗

i,j is a species-specific latent process. Analogous
to the latent factor multi-species occupancy model, we model w∗

i,j using a factor modeling approach, where
we have

w∗
i,j = λ⊤

i wj , (37)

where λi is the ith row of factor loadings from an N × q matrix Λ, and wj is a q × 1 vector of independent
latent factors at site j. We achieve computational improvements and dimension reduction by setting q << N .
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We account for residual species correlations via their individual responses (i.e., loadings) to the q latent
factors. We can envision the latent variables wj as unmeasured site-specific covariates that are treated as
random variables in the model estimation procedure. Analogous to the latent factor multi-species occupancy
model, we assign a standard normal prior distribution to the latent factors (i.e., we assume each latent factor
is independent and arises from a normal distribution with mean 0 and standard deviation 1).

We assume all species-specific parameters (βi,t for all t = 1, . . . , pψ) arise from community-level distributions
(Dorazio and Royle 2005; Gelfand et al. 2005). Specifically, we assign a normal prior with mean and variance
hyperparameters that represent the community-level average and variance among species-specific effects
across the community, respectively. For example, we model the non-spatial component of the species-specific
occurrence intercept, βi,1, following

βi,1 ∼ N(µβ1 , τ
2
β1

), (38)

where µβ1 is the average intercept across the community, and τ2
β1

is the variability in the species-specific
intercepts across the community.

6.2 Gibbs sampler
The Gibbs sampler for the latent factor joint species distribution model is analogous to the updates for all
occurrence parameters in the spatial factor multi-species occupancy model except for the latent factors wj ,
with all instances of zi(sj) replaced by y∗

i (sj). See Section 3.2. Additionally, the updates for the latent factors
are identical to the updates in the latent factor multi-species occupancy model, again with all instances of
zi,j replaced by y∗

i (sj). See Section 4.2.
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