
Multi-season occupancy models for assessing species trends and
spatio-temporal occurrence patterns

Jeffrey W. Doser and Marc Kéry

July 13, 2022

Contents
1 Introduction 1

2 Data structure and example data set 2

3 Brief overview of spatio-temporal occupancy models 6

4 Model description 7
4.1 Ecological process model . 7
4.2 Observation model . 8

5 Fitting multi-season occupancy models with tPGOcc() 9

6 Fitting multi-season spatial occupancy models with stPGOcc() 27

References 36

1 Introduction

This vignette details spOccupancy functionality introduced in v0.4.0 to fit multi-season occupancy
models. Throughout this vignette, we use “multi-season occupancy model” to refer to any model
where the true system state, represented by occupancy, changes over the duration of the sampling
that produced the data. As such, this term comprises both strictly dynamic occupancy models
(which express change by colonization and extinction parameters), as well as simpler models that
contain more phenomenological descriptions of occupancy change over time. Currently, and in this
vignette, we deal with the latter type of multi-season model; fully dynamic models may be the
subject of future work later on.

A primary goal of monitoring programs is often to document and understand trends in species
occurrence over time, in addition to understanding spatiotemporal variability in occurrence in
relation to a set of covariates. Until v0.4.0, spOccupancy functionality has focused solely on the
spatial dimension. Here we introduce the functions tPGOcc() and stPGOcc(), which fit nonspatial

1

and spatial multi-season occurrence models, respectively, for assessing trends in species occurrence
as well as the effects of spatially-varying and/or spatio-temporally varying covariates on occurrence.

As with all spOccupancy model fitting functions, we leverage the magical Pólya-Gamma data
augmentation framework for computational efficiency (Polson, Scott, and Windle 2013), and use
Nearest Neighbor Gaussian Processes (Datta et al. 2016) in our spatially-explicit implementation
(stPGOcc()) to drastically reduce the computational burden encountered when fitting models with
spatial random effects. In addition to fitting the models, we will also detail how spOccupancy
provides functionality for posterior predictive checks, model comparison and assessment using
the Widely Available Information Criterion (WAIC), k-fold cross-validation, and out-of sample
predictions of both occurrence and detection probability.

Below, we first load the spOccupancy package, the coda package for some additional MCMC
diagnostics, as well as the stars and ggplot2 packages to create some basic plots of our results.
We also set a seed so you can reproduce our results.

library(spOccupancy)
library(stars)
library(ggplot2)
set.seed(1996)

2 Data structure and example data set

As motivation, suppose we are interested in quantifying the trend in occurrence from 2010-2018 of
the Red-eyed Vireo in the Hubbard Brook Experimental Forest (HBEF) located in New Hampshire,
USA. As part of a long-term study of avian population and community dynamics at HBEF, trained
observers have performed 100m-radius point count surveys at 373 sites every year during the breeding
season (May-June) since 1999. Most sites are sampled three times during each year, providing
the necessary replication for use in an occupancy modeling framework. Observers record the total
number of individuals of each species they observed during each point count survey. Here we will
only use data from 2010-2018, and because we are interested in modeling occurence trends, we
summarize the count into a detection (1) if at least one individual was observed, and a nondetection
(0) if otherwise. For specific details on the data set, see the Hubbard Brook website and Doser,
Leuenberger, et al. (2022).

The data object hbefTrends contains the detection-nondetection data over the nine year period for
12 foliage-gleaning bird species. Below we load the data object, which is provided as part of the
spOccupancy package, and take a look at its structure using str().

data(hbefTrends)
str(hbefTrends)

2

https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=178

List of 4
$ y : num [1:12, 1:373, 1:9, 1:3] 0 0 0 1 0 0 1 0 0 0 ...
..- attr(*, "dimnames")=List of 4
.. ..$: chr [1:12] "AMRE" "BAWW" "BHVI" "BLBW" ...
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:9] "2010" "2011" "2012" "2013" ...
.. ..$: chr [1:3] "1" "2" "3"

$ occ.covs:List of 3
..$ elev : num [1:373] 475 494 546 587 588 ...
..$ years : int [1:373, 1:9] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
..$ site.effect: int [1:373] 1 2 3 4 5 6 7 8 9 10 ...

$ det.covs:List of 2
..$ day: num [1:373, 1:9, 1:3] 159 159 159 159 159 159 159 159 159 159 ...
.. ..- attr(*, "dimnames")=List of 3
..$: chr [1:373] "1" "2" "3" "4" ...
..$: chr [1:9] "2010" "2011" "2012" "2013" ...
..$: chr [1:3] "1" "2" "3"
..$ tod: num [1:373, 1:9, 1:3] 335 322 359 377 395 410 448 462 479 500 ...

$ coords : num [1:373, 1:2] 280000 280000 280000 280001 280000 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:2] "X" "Y"

We see the hbefTrends object is a list object similar to other data objects used in spOccupancy
model fitting functions. The list is comprised of the detection-nondetection data (y), occurrence
covariates (occ.covs), detection covariates (det.covs), and the spatial coordinates of each site
(coords). Note that coords is only necessary for spatially-explicit multi-season models. Here we
see the detection-nondetection data y is a four-dimensional array, with dimensions corresponding to
species (12), sites (373), primary time periods (9), and replicates (3). We will often refer to primary
time periods as simply “time”, which we emphasize is distinct from the temporal replicates used
to account for imperfect detection (which are sometimes referred to as secondary time periods).
Because we are only interested in working with a single species, we will create a new data object
called revi.data that contains the same data as hbefTrends, but we will subset y to only include
the Red-eyed Vireo (REVI).

revi.data <- hbefTrends
sp.names <- dimnames(hbefTrends$y)[[1]]
revi.data$y <- revi.data$y[sp.names == 'REVI', , ,]
Take a look at the new data object

3

str(revi.data)

List of 4
$ y : num [1:373, 1:9, 1:3] 0 0 0 1 0 1 0 1 1 0 ...
..- attr(*, "dimnames")=List of 3
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:9] "2010" "2011" "2012" "2013" ...
.. ..$: chr [1:3] "1" "2" "3"

$ occ.covs:List of 3
..$ elev : num [1:373] 475 494 546 587 588 ...
..$ years : int [1:373, 1:9] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
..$ site.effect: int [1:373] 1 2 3 4 5 6 7 8 9 10 ...

$ det.covs:List of 2
..$ day: num [1:373, 1:9, 1:3] 159 159 159 159 159 159 159 159 159 159 ...
.. ..- attr(*, "dimnames")=List of 3
..$: chr [1:373] "1" "2" "3" "4" ...
..$: chr [1:9] "2010" "2011" "2012" "2013" ...
..$: chr [1:3] "1" "2" "3"
..$ tod: num [1:373, 1:9, 1:3] 335 322 359 377 395 410 448 462 479 500 ...

$ coords : num [1:373, 1:2] 280000 280000 280000 280001 280000 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:2] "X" "Y"

Now the data are in the exact required format for fitting multi-season occupancy models in
spOccupancy. The detection-nondetection data y is a three-dimensional array, with the first element
corresponding to sites (373), the second element corresponding to primary time periods (in this
case, 9 years), and the third element corresponding to replicates (3). We will often refer to the
replicate surveys as secondary time periods to distinguish this form of temporal replication from
the temporal replication over the primary time periods. The occurrence (occ.covs) and detection
(det.covs) covariates are both lists comprised of the possible covariates we want to include on the
occurrence and detection portion of the occupancy model, respectively. For multi-season models,
occurrence covariates can vary across space and/or time, while detection covariates can vary across
space, across time, across space and time, or across each individual observation (i.e., vary across
space, time, and replicate).

For occ.covs, space varying covariates should be specified as a vector of length J , where J is
the total number of sites in the data set (in this case, 373). In revi.data, we see two site-level
covariates. elev is the elevation of each site, and the site.effect is a variable that simply denotes

4

the site number for each site. As we will see later, we can use the site.effect variable to include a
non-spatial random effect of site in our models as a simple way to account for the non-independence
of data points that come from the same site over the multiple primary time periods (i.e., years).
The final covariate we have in occ.covs is years, which is the variable we will use to estimate a
trend in occurrence. The variable years only varies over time, although we see that it is included in
occ.covs as a matrix with rows corresponding to sites and columns corresponding to primary time
periods (years). For covariates that only vary over time, spOccupancy requires that you specify
them as a site x time period matrix, with the values within each time period simply being constant.
We can see this structure by taking a look at the first four rows of revi.data$occ.covs$years.

revi.data$occ.covs$years[1:4,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 2010 2011 2012 2013 2014 2015 2016 2017 2018
[2,] 2010 2011 2012 2013 2014 2015 2016 2017 2018
[3,] 2010 2011 2012 2013 2014 2015 2016 2017 2018
[4,] 2010 2011 2012 2013 2014 2015 2016 2017 2018

This is the same format we would use to specify a covariate that varies over both space and time,
except the elements would of course then vary across both rows and columns.

For the detection covariates in det.covs, we specify space-varying, time-varying, and spatio-
temporally varying covariates in the same manner as just described for occ.covs. Additionally,
we can have detection covariates that vary across space, time, and replicate. We refer to these as
observation-level covariates. Observation-level covariates are specified as three-dimensional arrays,
with the first dimension corresponding to sites, the second dimension corresponding to primary time
periods, and the third dimension corresponding to replicates. Here, we have two observation-level
covariates in det.covs: day (the specific day of the year the survey took place) and tod (the specific
time of day the survey began, in minutes since midnight).

In practice, our data set will likely be unbalanced, where we have different numbers of both primary
and secondary time periods for each given site in our data set. For the detection-nondetection data y,
NA values should be placed in the site/time/replicate where no survey was taken. spOccupancy does
not impute missing values, but rather these missing values will be removed when fitting the model.
For detection covariates in det.covs, there may also be missing values placed in site/time/replicate
where there was no survey. If there is a mismatch between the NA values in y and det.covs,
spOccupancy will present either an error or warning message to inform you of this mismatch. For
sites that are not surveyed at all in a given primary time period, spOccupancy will automatically
predict occurrence probability and latent occurrence during these time periods. As a result, no
missing values are allowed in the occ.covs list. Thus, occurrence covariates (which vary by site
and/or time) must be available for all sites and/or time periods of your data set. If they are not

5

available for certain time periods at each site, some form of imputation (e.g., mean imputation)
would need to be done prior to fitting the model in spOccupancy. spOccupancy will return an error
if there are any missing values in occ.covs.

Finally, coords is a two-dimensional matrix of coordinates, with rows corresponding to sites, and
two columns that contain the horizontal (i.e., easting) and vertical (i.e., northing) dimensions for
each site. Note that spOccupancy requires coordinates to be specified in a projected coordinate
system (i.e., these should not be longitude/latitude values).

3 Brief overview of spatio-temporal occupancy models

The statistical ecology literature is filled with a variety of ways to model spatio-temporal occurrence
dynamics (see Chapter 4 in Kéry and Royle (2021) for a overview, as well as Chapter 9 for some
spatially-explicit extensions). Dynamic occupancy models and their numerous extensions (e.g.,
Sutherland, Elston, and Lambin (2014)) explicitly model species occurrence through time as a
function of initial occurrence, colonization, and persistence/extinction (MacKenzie et al. 2003).
These approaches model occurrence of a species in primary time period t based on the status (i.e.,
present or absent) of the species in the previous time period t−1. Such mechanistic, dynamic models
are extremely valuable tools for understanding the processes governing species distributions in space
and time, but these approaches can require large amounts of data (e.g., lots of sites and primary
time periods) in order to separately estimate colonization and extinction/persistence dynamics
(Briscoe et al. 2021).

Further, when interest lies in understanding spatio-temporal patterns of species occurrence (e.g.,
species trends) and not explicitly in colonization and/or extinction dynamics, fully dynamic occu-
pancy models may not be ideal, in particular across large spatio-temporal regions when models may
take drastically long to reach convergence. A variety of alternative modeling frameworks exist to
model spatio-temporal occurrence dynamics in both a single-species (Outhwaite et al. 2018; Rushing
et al. 2019; Diana et al. 2021) and multi-species context (Hepler and Erhardt 2021; Wright et al.
2021). Rather than focus on colonization/extinction dynamics, these approaches seek to model
spatio-temporal occurrence dynamics by incorporating spatial and/or temporal random effects that
can accommodate non-linear patterns in occurrence across both space and time. As a result of
computational advancements such as Pólya-Gamma data augmentation (Polson, Scott, and Windle
2013), these approaches can serve as efficient ways to model spatio-temporal occurrence dynamics
across a potentially large number of sites and/or time periods (Diana et al. 2021).

In spOccupancy, our approach closely resembles that of Diana et al. (2021), where we model spatio-
temporal occurrence patterns using independent spatial and temporal random effects, although we
use slightly different structures for both the temporal and spatial random effects. In the spatio-
temporal statistics literature, such an approach with independent spatial and temporal covariance

6

structures is referred to as a separable spatio-temporal covariance structure (Wikle, Zammit-Mangion,
and Cressie 2019).

4 Model description

4.1 Ecological process model

Let zj,t denote the presence (1) or absence (0) of a species at site j and primary time period t,
with j = 1, . . . , J and t = 1, . . . , T . For our REVI example, J = 373 and T = 9, where the primary
sampling periods are years. We assume this latent occurrence variable arises from a Bernoulli
distribution following

zj,t ∼ Bernoulli(ψj,t),

logit(ψj) = x⊤
j,tβ + wj + ηt,

(1)

where ψj,t is the probability of occurrence at site j during time period t, β are the effects of a series
of spatial and/or temporally-varying covariates xj,t (including an intercept), wj is a zero-mean site
random effect, and ηt is a zero-mean temporal random effect. Note that if interest lies in estimating
a trend in occurrence over time, the primary time period can be included as a covariate in xj,t to
explicitly estimate a linear trend.

spOccupancy provides users with flexibility in how to specify the site-level and temporal random
effects (see Table 1 for a summary of the different approaches). In the most basic approach, we
can remove both the site-level and temporal random effects and assume that all variability in
occurrence is explained by the covariates. Such a model may be adequate in certain scenarios,
but the assumption of independence among the repeated measurements at each site over the T
primary time periods may not be reasonable (ignoring such non-independence is referred to as
pseudoreplication (Hurlbert 1984) in the classical statistics literature).

We can model the site-level effect in two ways:

1. Model wj as a basic, unstructured random effect, where wj ∼ Normal(0, σ2
site). The

spOccupancy function tPGOcc() can fit such a model by including a random site-level
intercept using lme4 syntax (Bates et al. 2015) for the random effects in the model formula.

2. Model wj as a spatial random effect. When there are a sufficient number of sites sampled in
the data set, modeling the site-level effects as spatial random effects will likely improve both
inference and prediction of species distributions (Guélat and Kéry 2018). The spOccupancy
function stPGOcc() fits such a model with spatially-structured random effects. We model
the spatial random effects using Nearest Neighbor Gaussian Processes (Datta et al. 2016) to

7

Table 1: Different ways to model the site-level and temporal random effects in multi-season occupancy
models in spOccupancy.

Site Effect Temporal Effect spOccupancy
None None tPGOcc()

None Unstructured tPGOcc() with random time intercept

None AR(1) tPGOcc() with ar1 = TRUE

Unstructured None tPGOcc() with random site intercept

Unstructured Unstructured tPGOcc() with random time and site intercept

Unstructured AR(1) tPGOcc() with random site intercept and ar1 = TRUE

Spatial (NNGP) None stPGOcc()

Spatial (NNGP) Unstructured stPGOcc() with random time intercept

Spatial (NNGP) AR(1) stPGOcc() with ar1 = TRUE

yield a computationally efficient implementation of these spatially-explicit models. See the
spOccupancy introductory vignette and Doser, Finley, et al. (2022) for specific details.

Similarly, we can model the temporal random effect in two ways:

1. Model ηt as a basic, unstructured random effect, where ηt ∼ Normal(0, σ2
time). The functions

tPGOcc() and stPGOcc() both allow the inclusion of an unstructured, random temporal effect
using lme4 syntax (Bates et al. 2015). For example, if the variable years contains the specific
survey year in the occ.covs object, then we can include (1 | years) in the occurrence model
formula to specify an unstructured, random effect of year.

2. Model ηt using an AR(1) covariance structure. An AR(1) covariance structure allows for
temporal dependence in the temporal random effects instead of assuming independence among
the random effects for each primary time period. The logical argument ar1 (taking values
TRUE or FALSE) in both tPGOcc() and stPGOcc() controls whether or not an AR(1) temporal
random effect is included in the model. With an AR(1) covariance structure, we estimate a
temporal variance parameter (σ2

T) and a temporal correlation parameter (ρ).

4.2 Observation model

We do not directly observe zj,t, but rather we observe an imperfect representation of the latent
occurrence process as a result of imperfect detection (i.e., the failure to detect a species during a
survey when it is truly present). As a reminder, we assume no false positive observations. Let yj,t,k

be the observed detection (1) or nondetection (0) of a species of interest at site j during primary
time period t during replicate k for each of k = 1, . . . ,Kj,t. Note that the number of replicates,
Kj,t, can vary by site and primary time period. In practical applications, many sites will only be
sampled during a subset of the total T primary time periods, and so certain values of Kj,t will be 0.

8

https://www.jeffdoser.com/files/spoccupancy-web/articles/modelfitting

For our Red-eyed Vireo example, most sites are sampled during every year, and there is typically
three surveys at each site during each year. We envision the detection-nondetection data as arising
from a Bernoulli process conditional on the true latent occurrence process according to

yj,t,k ∼ Bernoulli(pj,t,kzj,t),

logit(pj,t,k) = v⊤
j,t,kα,

(2)

where pj,t,k is the probability of detecting a species at site j in primary time period t during replicate
k (given it is present at site j during time period t), which is a function of site, primary time period,
and/or replicate specific covariates V and a vector of regression coefficients (α).

To complete the Bayesian specification of the model, we assign multivariate normal priors for the
occurrence (β) and detection (α) regression coefficients. For non-spatial random intercepts included
in the occurrence or detection portions of the occupancy model, we assign an inverse-Gamma prior
on the variance parameter. If AR(1) temporal random effects are included in the model, we specify
an inverse-Gamma prior on the temporal variance parameter and a uniform prior bounded from -1
to 1 on the temporal correlation parameter. If spatial random effects are included in the ecological
sub-model, we assign an inverse-Gamma prior to the spatial variance parameter, and a uniform
prior to the spatial range and the spatial smoothness parameter. See Supporting Information S1 in
Doser, Finley, et al. (2022) for more details on prior distributions used in spOccupancy.

5 Fitting multi-season occupancy models with tPGOcc()

The function tPGOcc() fits multi-season single species occupancy models. tPGOcc() has the following
arguments

tPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

The arguments for tPGOcc() are very similar to other spOccupancy functions, and so we won’t go
into too much detail on each argument and will focus on fitting the models (see the introductory
vignette for more specific details on function arguments). The first two arguments, occ.formula and
det.formula, use standard R model syntax to specify the covariates to include in the occurrence
and detection portions of the model, respectively. We only specify the right side of the formulas. We
can include random (unstructured) intercepts in the occurrence and detection portion of the models
using lme4 syntax (Bates et al. 2015). The data argument contains the necessary data for fitting

9

https://www.jeffdoser.com/files/spoccupancy-web/articles/modelfitting
https://www.jeffdoser.com/files/spoccupancy-web/articles/modelfitting

the multi-season occupancy model. This should be a list object of the form previously described
with our revi.data object. As a reminder, let’s take a look at the structure of revi.data

str(revi.data)

List of 4
$ y : num [1:373, 1:9, 1:3] 0 0 0 1 0 1 0 1 1 0 ...
..- attr(*, "dimnames")=List of 3
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:9] "2010" "2011" "2012" "2013" ...
.. ..$: chr [1:3] "1" "2" "3"

$ occ.covs:List of 3
..$ elev : num [1:373] 475 494 546 587 588 ...
..$ years : int [1:373, 1:9] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
..$ site.effect: int [1:373] 1 2 3 4 5 6 7 8 9 10 ...

$ det.covs:List of 2
..$ day: num [1:373, 1:9, 1:3] 159 159 159 159 159 159 159 159 159 159 ...
.. ..- attr(*, "dimnames")=List of 3
..$: chr [1:373] "1" "2" "3" "4" ...
..$: chr [1:9] "2010" "2011" "2012" "2013" ...
..$: chr [1:3] "1" "2" "3"
..$ tod: num [1:373, 1:9, 1:3] 335 322 359 377 395 410 448 462 479 500 ...

$ coords : num [1:373, 1:2] 280000 280000 280000 280001 280000 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:2] "X" "Y"

Let’s first take a look at the average raw occurrence proportions across sites within each year as a
crude exploratory data analysis plot. This will give us an idea of how adequate a linear temporal
trend is for our analysis.

raw.occ.prob <- apply(revi.data$y, 2, mean, na.rm = TRUE)
plot(2010:2018, raw.occ.prob, pch = 16,

xlab = 'Year', ylab = 'Raw Occurrence Proportion',
cex = 1.5, frame = FALSE, ylim = c(0, 1))

10

2010 2012 2014 2016 2018

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Year

R
aw

 O
cc

ur
re

nc
e

P
ro

po
rt

io
n

Quickly looking at this plot reveals what appears to be a positive trend in raw occurrence probability
over the nine year period. Of course, there are some clear annual deviations from an overall trend
(in particular in 2016). Also remember that this is the raw occurrence probability, which is a
confounded process of true species occurrence and detection probability. Based on this plot, we will
move forward with fitting a linear temporal trend in the occurrence model to summarize the overall
pattern in occurrence probability over the nine year period.

More specifically, we will model REVI occurrence as a function of a linear temporal trend as well as
a linear and quadratic effect of elevation. We will model detection as a function of day of survey
(linear and quadratic) and time of day the survey began (linear). We will first fit a model with an
unstructured site-level random effect and an unstructured temporal random effect, which we specify
in the occurrence formula below using lme4 syntax.

revi.occ.formula <- ~ scale(years) + scale(elev) + I(scale(elev)ˆ2) +

(1 | years) + (1 | site.effect)
revi.det.formula <- ~ scale(day) + I(scale(day)ˆ2) + scale(tod)

Note: if you execute these previous three lines of R code by copy-pasting from the PDF document,
then you will have to manually replace the “hat” (i.e., power) signs, since markdown doesn’t seem
to be able to get them right; sorry for this. This same comment applies for all other places in the
vignette where we use powers. This is not a problem if working with the HTML version.

Below we specify the initial values for all model parameters. Note that the initial values for the

11

latent occurrence probabilities (z) should be a matrix with rows corresponding to sites and columns
corresponding to primary time periods. We set our initial values in z to 1 if the species was detected
at any of the replicates at a given site/time period and 0 otherwise (this is also what spOccupancy
does by default).

z.inits <- apply(revi.data$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
revi.inits <- list(beta = 0, # occurrence coefficients

alpha = 0, # detection coefficients

sigma.sq.psi = 1, # occurrence random effect variances

z = z.inits) # latent occurrence values

We specify priors in the priors argument. Here we set priors for the occurrence and detection
regression coefficients to vague normal priors (which are also the default values, so we could omit
their explicit definition), as well as vague inverse-gamma priors for the random effect variances.

revi.priors <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.psi.ig = list(a = 0.1, b = 0.1))

Finally, we set the arguments that control how long we run the MCMC. Instead of specifying an
argument with the total number of MCMC samples (e.g., as in PGOcc()), we split the samples into
a set of n.batch batches, each comprised of a length of batch.length. This is because we use
an adaptive algorithm to improve mixing of the MCMC chains of the temporal range parameter
when we fit multi-season occupancy models with an AR(1) temporal random effect. We will run the
model for 5000 iterations, comprised of 200 batches each of length 25. We specify a burn-in period
of 2000 iterations and a thinning rate of 12. See the introductory vignette for more details on the
adaptive algorithm.

n.chains <- 3
n.batch <- 200
batch.length <- 25
n.samples <- n.batch * batch.length
n.burn <- 2000
n.thin <- 12

We also set ar1 <- FALSE to indicate we will not fit the model with an AR(1) temporal random
effect (this is the default).

ar1 <- FALSE

We are now set to run the model with tPGOcc(). We set n.report = 50 to report model progress
after every 50th batch.

12

https://www.jeffdoser.com/files/spoccupancy-web/articles/modelfitting

Approx. run time: ~ 1.3 min

out <- tPGOcc(occ.formula = revi.occ.formula,
det.formula = revi.det.formula,
data = revi.data,
n.batch = n.batch,
batch.length = batch.length,
inits = revi.inits,
priors = revi.priors,
ar1 = ar1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains,
n.report = 50)

--
Preparing the data

--

There are missing values in data$y with corresponding non-missing values in data$det.covs.
Removing these site/year/replicate combinations for fitting the model.

--
Model description

--
Multi-season Occupancy Model with Polya-Gamma latent variable
fit with 373 sites and 9 primary time periods.

Samples per chain: 5000 (200 batches of length 25)
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750

Source compiled with OpenMP support and model fit using 1 thread(s).

--
Chain 1

--
Sampling ...

13

Batch: 50 of 200, 25.00%

Batch: 100 of 200, 50.00%

Batch: 150 of 200, 75.00%

Batch: 200 of 200, 100.00%
--

Chain 2
--
Sampling ...
Batch: 50 of 200, 25.00%

Batch: 100 of 200, 50.00%

Batch: 150 of 200, 75.00%

Batch: 200 of 200, 100.00%
--

Chain 3
--
Sampling ...
Batch: 50 of 200, 25.00%

Batch: 100 of 200, 50.00%

Batch: 150 of 200, 75.00%

Batch: 200 of 200, 100.00%

Note the message about missing values in data$y and data$det.covs. All spOccupancy model
fitting functions check for discrepancies in the missing values between the detection-nondetection
data points and the occurrence and detection covariate values. In this case, there are missing
detection-nondetection data points in certain site/time period/replicate combinations where there are
non-missing values in the detection covariates. tPGOcc() kindly informs us that these combinations
are not used when the model is fit. In other scenarios where spOccupancy encounters missing values
(e.g., missing values in data$occ.covs), you will receive an error with information on potential
ways to handle the missing values.

14

As with all spOccupancy model functions, we can use summary() to get a quick summary of model
results and convergence diagnostics (i.e., Gelman-Rubin diagnostic and effective sample size).

summary(out)

Call:
tPGOcc(occ.formula = revi.occ.formula, det.formula = revi.det.formula,

data = revi.data, inits = revi.inits, priors = revi.priors,
n.batch = n.batch, batch.length = batch.length, ar1 = ar1,
n.report = 50, n.burn = n.burn, n.thin = n.thin, n.chains = n.chains)

Samples per Chain: 5000
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750
Run Time (min): 0.6593

Occurrence (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 1.9131 0.4175 1.0178 1.9255 2.7091 1.4914 59
scale(years) 0.6198 0.4434 -0.2194 0.6271 1.5175 1.0814 42
scale(elev) -1.6226 0.1311 -1.8757 -1.6157 -1.3733 1.0200 480
I(scale(elev)^2) -0.6882 0.1007 -0.8820 -0.6919 -0.4874 1.0008 617

Occurrence Random Effect Variances (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

site.effect 2.8108 0.4611 2.0491 2.7844 3.8263 1.0115 352
years 1.9140 1.4378 0.5828 1.5579 5.2088 1.0588 236

Detection (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 0.2172 0.0441 0.1351 0.2175 0.2999 1.0003 1024
scale(day) -0.0132 0.0274 -0.0691 -0.0152 0.0386 1.0027 750
I(scale(day)^2) -0.0054 0.0284 -0.0654 -0.0050 0.0480 1.0006 750
scale(tod) -0.0280 0.0271 -0.0804 -0.0292 0.0260 1.0129 750

Taking a quick look, we see fairly adequate convergence of all parameters (i.e., most Rhats are all
less than 1.1), although we may want to run the chains a bit longer to ensure convergence of the

15

occurrence trend and year random effect. We see a positive trend in occurrence probability, which
matches with the EDA plot we produced earlier. We also see that the variance of both the site-level
effect and temporal random effect are decently large, indicating substantial variation in occurrence
probabilities across sites and years (beyond that which is explained by the covariates and their fixed
effects).

Next we will fit the same model, but instead of using an unstructured temporal random effect,
we will use an AR(1) temporal random effect. We do this by removing (1 | years) from the
occ.formula and setting ar1 = TRUE.

Approx. run time: ~ 1.2 min

out.ar1 <- tPGOcc(occ.formula = ~ scale(years) + scale(elev) + I(scale(elev)ˆ2) +

(1 | site.effect),
det.formula = revi.det.formula,
data = revi.data,
n.batch = n.batch,
batch.length = batch.length,
inits = revi.inits,
priors = revi.priors,
ar1 = TRUE,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains,
n.report = 50)

--
Preparing the data

--

There are missing values in data$y with corresponding non-missing values in data$det.covs.
Removing these site/year/replicate combinations for fitting the model.

No prior specified for rho.unif.
Setting uniform bounds to -1 and 1.

No prior specified for sigma.sq.t.
Using an inverse-Gamma prior with the shape parameter set to 2 and scale parameter to 0.5.

rho is not specified in initial values.
Setting initial value to random value from the prior distribution

sigma.sq.t is not specified in initial values.
Setting initial value to random value between 0.5 and 10

16

--
Model description

--
Multi-season Occupancy Model with Polya-Gamma latent variable
fit with 373 sites and 9 primary time periods.

Samples per chain: 5000 (200 batches of length 25)
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750

Using an AR(1) temporal autocorrelation matrix in the occurrence sub-model.

Source compiled with OpenMP support and model fit using 1 thread(s).

--
Chain 1

--
Sampling ...
Batch: 50 of 200, 25.00%

Parameter Acceptance Tuning
rho 48.0 1.23368

Batch: 100 of 200, 50.00%

Parameter Acceptance Tuning
rho 32.0 1.39097

Batch: 150 of 200, 75.00%

Parameter Acceptance Tuning
rho 28.0 1.41907

Batch: 200 of 200, 100.00%
--

Chain 2
--
Sampling ...
Batch: 50 of 200, 25.00%

17

Parameter Acceptance Tuning
rho 56.0 1.33643

Batch: 100 of 200, 50.00%

Parameter Acceptance Tuning
rho 24.0 1.33643

Batch: 150 of 200, 75.00%

Parameter Acceptance Tuning
rho 48.0 1.33643

Batch: 200 of 200, 100.00%
--

Chain 3
--
Sampling ...
Batch: 50 of 200, 25.00%

Parameter Acceptance Tuning
rho 44.0 1.44773

Batch: 100 of 200, 50.00%

Parameter Acceptance Tuning
rho 36.0 1.41907

Batch: 150 of 200, 75.00%

Parameter Acceptance Tuning
rho 40.0 1.25860

Batch: 200 of 200, 100.00%

summary(out.ar1)

Call:
tPGOcc(occ.formula = ~scale(years) + scale(elev) + I(scale(elev)^2) +

(1 | site.effect), det.formula = revi.det.formula, data = revi.data,
inits = revi.inits, priors = revi.priors, n.batch = n.batch,
batch.length = batch.length, ar1 = TRUE, n.report = 50, n.burn = n.burn,
n.thin = n.thin, n.chains = n.chains)

18

Samples per Chain: 5000
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750
Run Time (min): 0.6524

Occurrence (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 1.9633 0.4225 1.1000 1.9541 2.7792 1.0192 69
scale(years) 0.6633 0.3968 -0.1125 0.6849 1.4239 1.1856 54
scale(elev) -1.6041 0.1269 -1.8489 -1.6025 -1.3739 1.0182 491
I(scale(elev)^2) -0.6957 0.0996 -0.8910 -0.6917 -0.5030 1.0024 656

Occurrence Random Effect Variances (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

site.effect 2.7449 0.4367 1.9914 2.7174 3.7102 1.0094 332

Detection (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 0.2187 0.0428 0.1340 0.2192 0.2995 1.0042 750
scale(day) -0.0122 0.0266 -0.0637 -0.0118 0.0414 1.0134 750
I(scale(day)^2) -0.0050 0.0282 -0.0597 -0.0067 0.0492 1.0268 750
scale(tod) -0.0278 0.0282 -0.0829 -0.0276 0.0257 1.0181 750

Occurrence AR(1) Temporal Covariance:
Mean SD 2.5% 50% 97.5% Rhat ESS

sigma.sq.t 1.3406 0.7571 0.4988 1.1472 3.3115 1.0096 638
rho 0.1456 0.2722 -0.4208 0.1625 0.6388 1.0079 300

Note the messages from tPGOcc() in the Preparing the data section. We use the default priors
and starting values for the AR(1) variance (sigma.sq.t) and correlation (rho) parameters, which
take the form of a weakly-informative inverse-Gamma prior for sigma.sq.t and a uniform prior on
rho with bounds of -1 and 1. Note that when rho falls between -1 and 1, the AR(1) component is
considered stationary. When rho is allowed to range outside of these bounds, the model is more
unstable and can result in unrealistic estimates, and so we do not recommend allow rho to vary
outside of -1 and 1.

19

We see pretty strong correspondence between the estimated values from the model with the
unstructured temporal random effect and the model with the AR(1) temporal random effect.
Looking at the AR(1) covariance parameters, we see the temporal variance (sigma.sq.t) is again
fairly large, and the temporal correlation parameter (rho) is moderately positive, indicating there is
residual positive correlation in the occurrence values from one year to the next. Again, note the
positive trend in occurrence probability.

We can use the WAIC (Watanabe 2010) to do a formal comparison of the two models that use
different temporal random effects. We do this using the waicOcc() function.

waicOcc(out)

elpd pD WAIC
-4702.3786 219.1876 9843.1324

waicOcc(out.ar1)

elpd pD WAIC
-4704.4205 216.2989 9841.4387

Here we see the WAIC values are very similar, with the model using the AR(1) covariance structure
slightly favored over the unstructured random effect (lower values of WAIC indicate better model
fit). Given the minute gain in WAIC, in practice one might here use the more simple model for
inference (i.e., the unstructured temporal random effect).

Next, let’s perform a Goodness of Fit assessment by conducting a posterior predictive check on the
two models. We do this using the ppcOcc() function. Because posterior predictive checks are not
valid for binary responses (McCullagh and Nelder 2019), we group the data across sites (group =
1) and use the Freeman-Tukey statistic as a fit statistic. The summary() function provides us with
a Bayesian p-value for the entire data set, as well as for each time period to give an indication on
how our model fits the data points across each time period.

Unstructured temporal random effect

ppc.out <- ppcOcc(out, fit.stat = 'freeman-tukey', group = 1)

Currently on time period 1 out of 9

Currently on time period 2 out of 9

Currently on time period 3 out of 9

Currently on time period 4 out of 9

Currently on time period 5 out of 9

Currently on time period 6 out of 9

20

Currently on time period 7 out of 9

Currently on time period 8 out of 9

Currently on time period 9 out of 9

summary(ppc.out)

Call:
ppcOcc(object = out, fit.stat = "freeman-tukey", group = 1)

Samples per Chain: 5000
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750

--
All time periods combined

--
Bayesian p-value: 0.6733

--
Individual time periods

--
Time Period 1 Bayesian p-value: 0.4107
Time Period 2 Bayesian p-value: 0.468
Time Period 3 Bayesian p-value: 0.6373
Time Period 4 Bayesian p-value: 0.544
Time Period 5 Bayesian p-value: 0.9373
Time Period 6 Bayesian p-value: 0.9107
Time Period 7 Bayesian p-value: 0.5613
Time Period 8 Bayesian p-value: 0.9173
Time Period 9 Bayesian p-value: 0.6733
Fit statistic: freeman-tukey

AR(1) temporal random effect

ppc.out.ar1 <- ppcOcc(out.ar1, fit.stat = 'freeman-tukey', group = 1)

Currently on time period 1 out of 9

21

Currently on time period 2 out of 9

Currently on time period 3 out of 9

Currently on time period 4 out of 9

Currently on time period 5 out of 9

Currently on time period 6 out of 9

Currently on time period 7 out of 9

Currently on time period 8 out of 9

Currently on time period 9 out of 9

summary(ppc.out.ar1)

Call:
ppcOcc(object = out.ar1, fit.stat = "freeman-tukey", group = 1)

Samples per Chain: 5000
Burn-in: 2000
Thinning Rate: 12
Number of Chains: 3
Total Posterior Samples: 750

--
All time periods combined

--
Bayesian p-value: 0.6644

--
Individual time periods

--
Time Period 1 Bayesian p-value: 0.3947
Time Period 2 Bayesian p-value: 0.456
Time Period 3 Bayesian p-value: 0.6627
Time Period 4 Bayesian p-value: 0.5227
Time Period 5 Bayesian p-value: 0.8987
Time Period 6 Bayesian p-value: 0.912
Time Period 7 Bayesian p-value: 0.532

22

Time Period 8 Bayesian p-value: 0.9187
Time Period 9 Bayesian p-value: 0.6827
Fit statistic: freeman-tukey

We see very similar values for both models, with the overall Bayesian p-value close to 0.5, indicating
adequate model fit across the whole data set. We do see that the Bayesian p-values for certain years
are quite close to 1, potentially indicating our model generates replicated data with more variability
than the actual data in this time periods, which we may wish to explore further in a full analysis.

Finally, we will conclude this section by predicting REVI occurrence probability across the entire
Hubbard Brook forest. The object hbefEelev (which comes as part of the spOccupancy package)
contains elevation data at a 30x30m resolution from the National Elevation Data set across the
entire HBEF. We load the data below.

data(hbefElev)
str(hbefElev)

'data.frame': 46090 obs. of 3 variables:
$ val : num 914 916 918 920 922 ...
$ Easting : num 276273 276296 276318 276340 276363 ...
$ Northing: num 4871424 4871424 4871424 4871424 4871424 ...

The column val contains the elevation values, while Easting and Northing contain the spatial
coordinates that we will use for plotting. We can use the predict() function and our tPGOcc()
fitted model object to predict occurrence across these sites and over any primary time periods in
our data set. We can predict for a single time period or multiple time periods at once. Currently,
spOccupancy only supports prediction at primary time periods that are sampled in the data (i.e.,
forecasting is not supported), although we hope to allow this at some point in the future. The
predict() function for tPGOcc() has five arguments: object, X.0, t.cols, ignore.RE = FALSE,
and type = 'occupancy'. The object argument is simply the fitted model object we obtain from
tPGOcc. We will use the AR(1) model object (out.ar1) for prediction to display the more complex
model, but in reality we would likely make inference from the more simple model given the very
small difference in WAIC. The X.0 argument is the design matrix of covariates at the prediction
locations. This should be a three-dimensional array, with dimensions corresponding to site, primary
time period, and covariate. Note that the first covariate should consist of all 1s for the intercept
if an intercept is included in the model. The t.cols argument is a vector that denotes which
primary time periods are contained in the design matrix of covariates at the prediction locations.
This is used to indicate what primary time periods we want to predict for. The values should
indicate the columns in data$y used to fit the model for which prediction is desired. The ignore.RE
argument is used to specify whether or not we want to ignore unstructured random effects in the
prediction and just use the fixed effects and any structured random effects (ignore.RE = TRUE), or

23

include unstructured random effects for prediction (ignore.RE = FALSE). By default, we set this
to FALSE. When ignore.RE = FALSE, the estimated values of the unstructured random effects are
included in the prediction for both sampled and unsampled sites. For sampled sites, these effects
come directly from those estimated from the model, whereas for unsampled sites, the effects are
drawn from a normal distribution using our estimates of the random effect variance. Including
unstructured random effects in the predictions will generally improve prediction at sampled sites,
and will lead to nearly identical point estimates at non-sampled sites, but with larger uncertainty.
Lastly, the type argument is used to specify whether we want to predict occurrence/occupancy
(type = 'occupancy') or detection (type = 'detection').

Below we will predict occurrence in the first (2010) and last (2018) year of our data set for the
entire HBEF. Given that we standardized the elevation and year values when we fit the model,
we need to standardize both covariates for prediction using the exact same values of the mean
and standard deviation of the values used to fit the model. We set the ignore.RE = TRUE to only
perform prediction with the fixed effects and the AR(1) structure temporal random effects (i.e., we
don’t use the unstructured site random effects for prediction).

Number of prediction sites.

J.pred <- nrow(hbefElev)
Number of prediction years.

n.years.pred <- 2
Number of predictors (including intercept)

p.occ <- ncol(out.ar1$beta.samples)
Get covariates and standardize them using values used to fit the model

elev.pred <- (hbefElev$val - mean(revi.data$occ.covs$elev)) / sd(revi.data$occ.covs$elev)
year.pred <- matrix(rep((c(2010, 2018) - mean(revi.data$occ.covs$years)) /

sd(revi.data$occ.covs$years),
length(elev.pred)), J.pred, n.years.pred, byrow = TRUE)

Create three-dimensional array

X.0 <- array(1, dim = c(J.pred, n.years.pred, p.occ))
Fill in the array

Years

X.0[, , 2] <- year.pred
Elevation

X.0[, , 3] <- elev.pred
Elevationˆ2

X.0[, , 4] <- elev.predˆ2
Check out the structure

str(X.0)

24

num [1:46090, 1:2, 1:4] 1 1 1 1 1 1 1 1 1 1 ...

Indicate which primary time periods (years) we are predicting for

t.cols <- c(1, 9)
Approx. run time: < 30 sec

out.pred <- predict(out.ar1, X.0, t.cols = t.cols, ignore.RE = TRUE, type = 'occupancy')
Check out the structure

str(out.pred)

List of 5
$ psi.0.samples: num [1:750, 1:46090, 1:2] 0.002626 0.003172 0.002431 0.001788 0.000823 ...
$ z.0.samples : int [1:750, 1:46090, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
$ run.time : 'proc_time' Named num [1:5] 5.7 3.68 7.37 0 0
..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ...

$ call : language predict.tPGOcc(object = out.ar1, X.0 = X.0, t.cols = t.cols, ignore.RE = TRUE, type = "occupancy")
$ object.class : chr "tPGOcc"
- attr(*, "class")= chr "predict.tPGOcc"

We see the out.pred object is a list with two main components: psi.0.samples (the occurrence
probability predictions) and z.0.samples (the latent occurrence predictions). Both objects are
three-dimensional arrays with dimensions corresponding to MCMC sample, site, and primary time
period, respectively. Below we plot the mean of REVI occurrence probability in 2009 and 2018
across the forest.

plot.dat <- data.frame(x = hbefElev$Easting,
y = hbefElev$Northing,
mean.2009.psi = apply(out.pred$psi.0.samples[, , 1], 2, mean),
mean.2018.psi = apply(out.pred$psi.0.samples[, , 2], 2, mean),
sd.2009.psi = apply(out.pred$psi.0.samples[, , 1], 2, sd),
sd.2018.psi = apply(out.pred$psi.0.samples[, , 2], 2, sd),
stringsAsFactors = FALSE)

Make a species distribution map showing the point estimates,

or predictions (posterior means)

dat.stars <- st_as_stars(plot.dat, dims = c('x', 'y'))
2009

ggplot() +

geom_stars(data = dat.stars, aes(x = x, y = y, fill = mean.2009.psi)) +

scale_fill_viridis_c(na.value = 'transparent') +

labs(x = 'Easting', y = 'Northing', fill = '',
title = 'Mean REVI occurrence probability 2009') +

25

theme_bw()

4866000

4867000

4868000

4869000

4870000

4871000

276000 278000 280000 282000 284000
Easting

N
or

th
in

g

0.2

0.4

0.6

Mean REVI occurrence probability 2009

2018

ggplot() +

geom_stars(data = dat.stars, aes(x = x, y = y, fill = mean.2018.psi)) +

scale_fill_viridis_c(na.value = 'transparent') +

labs(x = 'Easting', y = 'Northing', fill = '',
title = 'Mean REVI occurrence probability 2018') +

theme_bw()

26

4866000

4867000

4868000

4869000

4870000

4871000

276000 278000 280000 282000 284000
Easting

N
or

th
in

g

0.25

0.50

0.75

Mean REVI occurrence probability 2018

We see that compared to 2009, REVI occurrence probability appears higher throughout much of the
interior region of the forest. This corresponds fairly closely with increasing occurrence probability
at higher elevations in the forest, which could be something interesting to explore further.

6 Fitting multi-season spatial occupancy models with stPGOcc()

We will now extend our multi-season occupancy model to the case where the site-level random effect
is modeled as a spatial random effect rather than an unstructured random effect. As we discussed
previously, we will incorporate such spatial random effects into our model using Nearest Neighbor
Gaussian Processes (Datta et al. 2016) in the stPGOcc() function. This will ensure models are
computationally efficient even when modeling over a large number of spatial locations. We will
incorporate an AR(1) temporal random effect into our model to exhibit the more complex model,
but again given the very similar values in WAIC between the AR(1) and unstructured random
effect model, in a real analysis we would likely draw inference from the model with an unstructured
temporal random effect.

Because we found the model with an AR(1) temporal random effect was the most supported model
according to WAIC (although only very slightly) we will incorporate an AR(1) temporal random
effect into our model.

The function stPGOcc() has similar arguments to tPGOcc() and exactly the same arguments as
the spPGOcc() function for fitting single-season spatial occupancy models (with the addition of the
ar1 argument):

27

stPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Because the arguments of stPGOcc() are identical to other spatially-explicit functions in
spOccupancy, we won’t go into all that much detail on them here, and rather encourage you to
look at the introductory vignette for more specific details, in particular the section on single-species
spatial occupancy models.

The occ.formula, det.formula, and data arguments all take the same form as what we saw
previously for tPGOcc(), with the exception that we are now required to include the spatial
coordinates in the data object as a matrix with rows corresponding to sites and columns containing
the easting and northing coordinates of each site. Notice in occ.formula we remove the non-spatial
random effect for site ((1 | site.effect)), as stPGOcc() will incorporate a spatial random effect
into the model instead.

revi.sp.occ.formula <- ~ scale(years) + scale(elev) + I(scale(elev)ˆ2)
revi.sp.det.formula <- ~ scale(day) + I(scale(day)ˆ2) + scale(tod)
Remind ourselves of the format of the data

str(revi.data)

List of 4
$ y : num [1:373, 1:9, 1:3] 0 0 0 1 0 1 0 1 1 0 ...
..- attr(*, "dimnames")=List of 3
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:9] "2010" "2011" "2012" "2013" ...
.. ..$: chr [1:3] "1" "2" "3"

$ occ.covs:List of 3
..$ elev : num [1:373] 475 494 546 587 588 ...
..$ years : int [1:373, 1:9] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
..$ site.effect: int [1:373] 1 2 3 4 5 6 7 8 9 10 ...

$ det.covs:List of 2
..$ day: num [1:373, 1:9, 1:3] 159 159 159 159 159 159 159 159 159 159 ...
.. ..- attr(*, "dimnames")=List of 3
..$: chr [1:373] "1" "2" "3" "4" ...

28

https://www.jeffdoser.com/files/spoccupancy-web/articles/modelfitting

..$: chr [1:9] "2010" "2011" "2012" "2013" ...

..$: chr [1:3] "1" "2" "3"

..$ tod: num [1:373, 1:9, 1:3] 335 322 359 377 395 410 448 462 479 500 ...
$ coords : num [1:373, 1:2] 280000 280000 280000 280001 280000 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:373] "1" "2" "3" "4" ...
.. ..$: chr [1:2] "X" "Y"

Below we specify the initial values for all model parameters. This is the same as what we did for
tPGOcc(), except we now also specify an initial value for the parameter that controls the spatial
range and decay (phi) as well as the spatial variance (sigma.sq). Notice the initial value for the
spatial decay parameter phi is set to a value of 3 divided by the mean distance between points,
which corresponds to setting the effective range of spatial autocorrelation to the average distance
between points (Banerjee, Carlin, and Gelfand 2003).

z.inits <- apply(revi.data$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
Pair-wise distance between all sites

dist.hbef <- dist(revi.data$coords)
revi.sp.inits <- list(beta = 0, alpha = 0, z = z.inits,

sigma.sq = 1, phi = 3 / mean(dist.hbef),
sigma.sq.t = 1.5, rho = 0.2)

We specify priors in the priors argument just as we saw with tPGOcc(). We use an inverse-Gamma
prior for the spatial variance sigma.sq and a uniform prior for the spatial range parameter phi.

revi.sp.priors <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.t.ig = c(2, 0.5),
rho.unif = c(-1, 1),
sigma.sq.ig = c(2, 1),
phi.unif = c(3 / max(dist.hbef), 3 / min(dist.hbef)))

Next we specify parameters associated with the spatial random effects. In particular, we set
cov.model = 'exponential' to use an exponential spatial correlation function and n.neighbors
= 5 to use an NNGP with 5 nearest neighbors. We also specify the ar1 argument to indicate we
will use an AR(1) temporal covariance structure.

cov.model <- 'exponential'
n.neighbors <- 5
ar1 <- TRUE

Finally, we set the number of MCMC batches, batch length, the amount of burn-in, and our

29

thinning rate. Note we run the model longer than we ran the non-spatial multi-season model, as
spatially-explicit models often take longer to converge.

n.batch <- 600
batch.length <- 25
Total number of samples

n.batch * batch.length

[1] 15000

n.burn <- 10000
n.thin <- 20

We now run the model with stPGOcc() and take a look at a summary of the results using summary().

Approx. run time: ~ 2.5 min

out.sp <- stPGOcc(occ.formula = revi.sp.occ.formula,
det.formula = revi.sp.det.formula,
data = revi.data,
inits = revi.sp.inits,
priors = revi.sp.priors,
cov.model = cov.model,
n.neighbors = n.neighbors,
n.batch = n.batch,
batch.length = batch.length,
verbose = TRUE,
ar1 = ar1,
n.report = 200,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 3)

--
Preparing the data

--

There are missing values in data$y with corresponding non-missing values in data$det.covs.
Removing these site/time/replicate combinations for fitting the model.

--
Building the neighbor list

--
--

30

Building the neighbors of neighbors list
--
--

Model description
--
Spatial NNGP Multi-season Occupancy Model with Polya-Gamma latent
variable fit with 373 sites and 9 primary time periods.

Samples per chain: 15000 (600 batches of length 25)
Burn-in: 10000
Thinning Rate: 20
Number of Chains: 3
Total Posterior Samples: 750

Using the exponential spatial correlation model.

Using 5 nearest neighbors.

Using an AR(1) temporal autocorrelation matrix.

Source compiled with OpenMP support and model fit using 1 thread(s).

Adaptive Metropolis with target acceptance rate: 43.0
--

Chain 1
--
Sampling ...
Batch: 200 of 600, 33.33%

Parameter Acceptance Tuning
phi 36.0 0.30422
rho 32.0 1.09417

Batch: 400 of 600, 66.67%

Parameter Acceptance Tuning
phi 36.0 0.29820
rho 32.0 1.03045

Batch: 600 of 600, 100.00%

31

--
Chain 2

--
Sampling ...
Batch: 200 of 600, 33.33%

Parameter Acceptance Tuning
phi 32.0 0.29820
rho 68.0 1.23368

Batch: 400 of 600, 66.67%

Parameter Acceptance Tuning
phi 28.0 0.30422
rho 36.0 1.18530

Batch: 600 of 600, 100.00%
--

Chain 3
--
Sampling ...
Batch: 200 of 600, 33.33%

Parameter Acceptance Tuning
phi 36.0 0.32303
rho 44.0 1.13883

Batch: 400 of 600, 66.67%

Parameter Acceptance Tuning
phi 48.0 0.30422
rho 36.0 1.07251

Batch: 600 of 600, 100.00%

summary(out.sp)

Call:
stPGOcc(occ.formula = revi.sp.occ.formula, det.formula = revi.sp.det.formula,

data = revi.data, inits = revi.sp.inits, priors = revi.sp.priors,
cov.model = cov.model, n.neighbors = n.neighbors, n.batch = n.batch,
batch.length = batch.length, verbose = TRUE, ar1 = ar1, n.report = 200,

32

n.burn = n.burn, n.thin = n.thin, n.chains = 3)

Samples per Chain: 15000
Burn-in: 10000
Thinning Rate: 20
Number of Chains: 3
Total Posterior Samples: 750
Run Time (min): 2.0959

Occurrence (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 1.9614 0.5461 0.6494 2.0042 2.9375 1.2082 59
scale(years) 0.6297 0.3992 -0.1610 0.6316 1.4164 1.0615 85
scale(elev) -1.5063 0.1992 -1.8995 -1.4920 -1.1288 1.0107 295
I(scale(elev)^2) -0.7615 0.1551 -1.0770 -0.7497 -0.4953 1.0415 319

Detection (logit scale):
Mean SD 2.5% 50% 97.5% Rhat ESS

(Intercept) 0.2184 0.0425 0.1308 0.2189 0.3061 1.0232 750
scale(day) -0.0090 0.0270 -0.0606 -0.0089 0.0441 1.0040 657
I(scale(day)^2) -0.0035 0.0289 -0.0628 -0.0031 0.0543 1.0395 750
scale(tod) -0.0281 0.0269 -0.0844 -0.0275 0.0211 1.0183 750

Spatio-temporal Covariance:
Mean SD 2.5% 50% 97.5% Rhat ESS

sigma.sq 2.6846 0.5036 1.8587 2.6337 3.7830 1.0520 452
phi 0.0033 0.0007 0.0020 0.0033 0.0048 1.1107 335
sigma.sq.t 1.3203 0.8092 0.4840 1.0970 3.4814 1.0098 385
rho 0.1108 0.2287 -0.3462 0.1142 0.5470 1.0324 255

As with tPGOcc(), we can do model assessment using ppcOcc() and prediction using predict(),
which we do not show here for the sake of brevity. We will note the only exception for prediction
is that the coordinates of the new sites must also be sent into the predict() function. See
?predict.stPGOcc() for details.

Below we compare the model with spatially-explicit random effects to that with non-spatial site-level
random effects using WAIC.

Non-spatial (unstructured) site-level random effects

waicOcc(out.ar1)

33

elpd pD WAIC
-4704.4205 216.2989 9841.4387

Spatial random effects

waicOcc(out.sp)

elpd pD WAIC
-4717.5821 172.9719 9781.1080

We see a substantial decrease in WAIC, suggesting that incorporation of the spatial structure into
the site-level random effects improved model fit.

In addition to WAIC, both tPGOcc() and stPGOcc() allow for performing k-fold cross-validation as
an assessment of model predictive performance. Comparing predictive performance using out-of-
sample data can provide us with better insight on which model out of a set of candidate models
performs better for prediction, whereas WAIC (and other information criteria) provide us with
an idea of which model fits the data the better, and thus may be more suitable if inference is the
desired objective. We use the model deviance as our scoring rule for the cross-validation (Hooten
and Hobbs 2015).

The arguments k.fold, k.fold.threads, k.fold.seed, and k.fold.only control whether or not
we perform k-fold cross-validation in both tPGOcc() and stPGOcc(). k.fold specifies the number
of k folds for cross-validation. If this is not specified, k-fold cross-validation is not performed.
k.fold.threads specifies the number of threads we want to use to perform the cross-validation.
k.fold.seed is a random seed that is used to split the data set into k.fold parts. Lastly, the
k.fold.only is a logical value that indicates whether or not we only want to perform cross-
validation (k.fold.only = TRUE) or we want to perform cross-validation after fitting the entire
model (k.fold.only = FALSE). By default, k.fold.only = FALSE. Below we perform four-fold
cross-validation for both the non-spatial model and the spatial model. We run the cross-validation
across four threads, and only perform cross-validation since we have already fit the models with the
whole data set. We use the default value of k.fold.seed, which is 100.

Non-spatial (Approx. run time: ~ 2.5 min)

k.fold.non.sp <- tPGOcc(occ.formula = ~ scale(years) + scale(elev) + I(scale(elev)ˆ2) +

(1 | site.effect),
det.formula = revi.det.formula,
data = revi.data,
n.batch = 200,
batch.length = 25,
inits = revi.inits,
priors = revi.priors,
ar1 = TRUE,

34

verbose = FALSE,
n.burn = 2000,
n.thin = 12,
n.chains = n.chains,
n.report = 50,
k.fold = 4,
k.fold.threads = 4,
k.fold.only = TRUE)

Spatial (Approx run time: ~ 2.5 min)

k.fold.sp <- stPGOcc(occ.formula = revi.sp.occ.formula,
det.formula = revi.sp.det.formula,
data = revi.data,
inits = revi.sp.inits,
priors = revi.sp.priors,
cov.model = cov.model,
n.neighbors = n.neighbors,
n.batch = n.batch,
batch.length = batch.length,
verbose = FALSE,
ar1 = TRUE,
n.report = 50,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 3,
k.fold = 4,
k.fold.threads = 4,
k.fold.only = TRUE)

str(k.fold.sp)

List of 2
$ k.fold.deviance: num 9844
$ run.time : 'proc_time' Named num [1:5] 0.127 0.353 51.844 204.454 294.263
..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ...

- attr(*, "class")= chr "stPGOcc"

k.fold.non.sp$k.fold.deviance

[1] 10185.37

35

k.fold.sp$k.fold.deviance

[1] 9844.255

When k.fold.only = TRUE, the resulting object from the call to the model function will be a list
with two elements: k.fold.deviance (the resulting model deviance value from the cross-validation)
and run.time (the total run time). We see the spatial model outperforms the non-spatial model,
which is in agreement with the results from WAIC.

References

Banerjee, Sudipto, Bradley P Carlin, and Alan E Gelfand. 2003. Hierarchical Modeling and Analysis
for Spatial Data. Chapman; Hall/CRC.

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects
Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v
067.i01.

Briscoe, Natalie J, Damaris Zurell, Jane Elith, Christian König, Guillermo Fandos, Anne-Kathleen
Malchow, Marc Kéry, Hans Schmid, and Gurutzeta Guillera-Arroita. 2021. “Can Dynamic
Occupancy Models Improve Predictions of Species’ Range Dynamics? A Test Using Swiss Birds.”
Global Change Biology 27 (18): 4269–82.

Datta, Abhirup, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. 2016. “Hierarchical
Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.” Journal of the
American Statistical Association 111 (514): 800–812.

Diana, Alex, Emily Dennis, Eleni Matechou, and Byron Morgan. 2021. “Fast Bayesian Inference for
Large Occupancy Data Sets, Using the Polya-Gamma Scheme.” arXiv Preprint arXiv:2107.14656.

Doser, Jeffrey W, Andrew O Finley, Marc Kéry, and Elise F Zipkin. 2022. “spOccupancy: An R
package for single-species, multi-species, and integrated spatial occupancy models.” Methods in
Ecology and Evolution 13 (8): 1670–78.

Doser, Jeffrey W, Wendy Leuenberger, T Scott Sillett, Michael T Hallworth, and Elise F Zipkin.
2022. “Integrated Community Occupancy Models: A Framework to Assess Occurrence and
Biodiversity Dynamics Using Multiple Data Sources.” Methods in Ecology and Evolution.

Guélat, Jérôme, and Marc Kéry. 2018. “Effects of Spatial Autocorrelation and Imperfect Detection
on Species Distribution Models.” Methods in Ecology and Evolution 9 (6): 1614–25.

Hepler, Staci A, and Robert J Erhardt. 2021. “A Spatiotemporal Model for Multivariate Occupancy
Data.” Environmetrics 32 (2): e2657.

Hooten, Mevin B, and N Thompson Hobbs. 2015. “A Guide to Bayesian Model Selection for
Ecologists.” Ecological Monographs 85 (1): 3–28.

Hurlbert, Stuart H. 1984. “Pseudoreplication and the Design of Ecological Field Experiments.”
Ecological Monographs 54 (2): 187–211.

36

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01

Kéry, Marc, and J Andrew Royle. 2021. Applied Hierarchical Modeling in Ecology: Analysis
of Distribution, Abundance, and Species Richness in r and BUGS: Volume 2: Dynamic and
Advanced Models. London, UK: Academic Press.

MacKenzie, Darryl I, James D Nichols, James E Hines, Melinda G Knutson, and Alan B Franklin.
2003. “Estimating Site Occupancy, Colonization, and Local Extinction When a Species Is
Detected Imperfectly.” Ecology 84 (8): 2200–2207.

McCullagh, Peter, and John A Nelder. 2019. Generalized Linear Models. Routledge.
Outhwaite, Charlotte L, Richard E Chandler, Gary D Powney, Ben Collen, Richard D Gregory, and

Nick JB Isaac. 2018. “Prior Specification in Bayesian Occupancy Modelling Improves Analysis
of Species Occurrence Data.” Ecological Indicators 93: 333–43.

Polson, Nicholas G, James G Scott, and Jesse Windle. 2013. “Bayesian Inference for Logistic
Models Using pólya–Gamma Latent Variables.” Journal of the American Statistical Association
108 (504): 1339–49.

Rushing, Clark S, J Andrew Royle, David J Ziolkowski, and Keith L Pardieck. 2019. “Modeling
Spatially and Temporally Complex Range Dynamics When Detection Is Imperfect.” Scientific
Reports 9 (1): 1–9.

Sutherland, CS, DA Elston, and X Lambin. 2014. “A Demographic, Spatially Explicit Patch
Occupancy Model of Metapopulation Dynamics and Persistence.” Ecology 95 (11): 3149–60.

Watanabe, Sumio. 2010. “Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable
Information Criterion in Singular Learning Theory.” Journal of Machine Learning Research 11
(12).

Wikle, Christopher K, Andrew Zammit-Mangion, and Noel Cressie. 2019. Spatio-Temporal Statistics
with r. Chapman; Hall/CRC.

Wright, Wilson J, Kathryn M Irvine, Thomas J Rodhouse, and Andrea R Litt. 2021. “Spatial
Gaussian Processes Improve Multi-Species Occupancy Models When Range Boundaries Are
Uncertain and Nonoverlapping.” Ecology and Evolution.

37

	Introduction
	Data structure and example data set
	Brief overview of spatio-temporal occupancy models
	Model description
	Ecological process model
	Observation model

	Fitting multi-season occupancy models with tPGOcc()
	Fitting multi-season spatial occupancy models with stPGOcc()
	References

